ORGANIC LETTERS

2012 Vol. 14, No. 21 5522–5525

Platinum-Catalyzed Oxoarylations of Ynamides with Nitrones

Sabyasachi Bhunia, Chin-Jung Chang, and Rai-Shung Liu*

Department of Chemistry, National Tsing-Hua University, Hsinchu, Taiwan, ROC rsliu@mx.nthu.edu.tw

Received September 24, 2012

ABSTRACT

$$= N_{R}^{EWG} + N_{N}^{O} Ar \xrightarrow{5\% \text{ PtCl}_{2}} X \xrightarrow{N_{R}^{EWG}} N_{R}^{EWG} \xrightarrow{\text{NaBH}_{3}CN} X \xrightarrow{\text{NaBH}_$$

A new platinum-catalyzed oxoarylation of ynamides with nitrones is reported. Cascade sequences for the synthesis of indolin-2-ones via NaBH₃CN reduction in situ of the initially formed oxoarylation products are also developed.

Gold-catalyzed intermolecular oxidations of alkynes with organic oxides presumably involve the generation of $\alpha\text{-}oxo$ gold carbenes $\mathbf{I};^{1-6}$ pyridine-based oxides 2 are superior to sulfur oxides 3 for generating such reactive intermediates. This new synthetic method provides potential access to valuable $\alpha\text{-}functionalized$ carbonyl compounds through a subsequent attack on the gold carbenes \mathbf{I} with an external nucleophile, as depicted in eq 1. Nevertheless, at the outset of the present study, there

(1) Xiao, J.; Li, X. Angew. Chem., Int. Ed. 2011, 50, 7226.

(2) For pyridine-based oxides, see selected examples: (a) Ye, L.; Cui, L.; Zhang, G.; Zhang, L. J. Am. Chem. Soc. 2010, 132, 3258. (b) Ye, L.; He, W.; Zhang, L. J. Am. Chem. Soc. 2010, 132, 8550. (c) He, W.; Li, C.; Zhang, L. J. Am. Chem. Soc. 2011, 133, 8482. (d) Davies, P. W.; Cremonesi, A.; Martin, N. Chem. Commun. 2011, 47, 379. (e) Lu, B.; Li, C.; Zhang, L. J. Am. Chem. Soc. 2011, 132, 14070. (f) Dateer, R.-B.; Pati, K.; Liu, R.-S. Chem. Commun. 2012, 48, 7200. (f) Dateer, R. B.; Shaibu, B. S.; Liu, R.-S. Angew. Chem., Int. Ed. 2012, 51, 113.

(3) For sulfur oxides, see: (a) Shapiro, N. D.; Toste, F. D. J. Am. Chem. Soc. 2007, 129, 4160. (b) Li, G.; Zhang, L. Angew. Chem., Int. Ed. 2007, 46, 5156. (c) Cuenca, A. B.; Montserrat, S.; Hossain, K. M.; Mancha, G.; Lledós, A.; Medio-Simón, M.; Ujaque, G.; Asensio, Org. Lett. 2009, 11, 4906. (d) Davies, P. W.; Albrecht, S. J. C. Angew. Chem., Int. Ed. 2009, 48, 8372. (e) Li, C.-W.; Pati, K.; Lin, G.-Y.; Sohel, S. M. A.; Hung, H.-H.; Liu, R.-S. Angew. Chem., Int. Ed. 2010, 49, 9891.

(4) For nitrones, see: (a) Mukherjee, A.; Dateer, R. B.; Chaudhuri, R.; Bhunia, S.; Karad, S. N.; Liu, R.-S. *J. Am. Chem. Soc.* **2011**, *133*, 15372. (b) Yeom, H. S.; Lee, J. E.; Shin, S. *Angew. Chem., Int. Ed.* **2008**, *47*, 7040. (c) Yeom, H. S.; Lee, Y.; Lee, J. E.; Shin, S. *Org. Biomol. Chem.* **2009**, *7*, 4744. (d) Yeom, H. S.; Lee, Y.; Jeong, J.; So, E.; Hwang, S.; Lee, J. E.; Lee, S. S.; Shin, S. *Angew. Chem., Int. Ed.* **2010**, *49*, 1611.

(5) For epoxides, see: (a) Li, C. W.; Lin, G. Y.; Liu, R.-S. *Chem.*— *Eur. J.* **2010**, *16*, 5803. (b) Lin, G.-Y.; Li, C.-W.; Hung, S.-H.; Liu, R.-S. *Org. Lett.* **2008**, *10*, 5059. (c) Hashmi, A. S. K.; Buhrle, M.; Salathe, R.; Bats, J. W. *Adv. Synth. Catal.* **2008**, *350*, 2059.

(6) For nitro group, see: Jadhav, A. M.; Bhunia, S.; Liu, R.-S. J. Am. Chem. Soc. 2011, 133, 1769–1771.

(7) He, W.; Li, C.; Zhang, L. J. Am. Chem. Soc. 2011, 13, 1738.

was only one successful example of such a conversion because of the following problems: (1) a competitive attack of this external nucleophile at the gold- π -alkyne; (2) a complexation of gold-carbene I with newly released pyridine, and (3) a second oxidation of gold carbenes I with organic oxides. Recently, we proposed a distinct route, as depicted in eq 2, in which a nucleophile is embedded within the organic oxide A^+ – O^- (A = nucleophile). At the end of the initial alkyne oxidation, the released nucleophile A is easily trapped with gold-carbene I within an inner sphere, so eliminating the preceding problems. This new approach also fulfills atom economy because the reduced form A is a part of product skeleton.

$$R \xrightarrow{\stackrel{\leftarrow}{-}} R \xrightarrow{\stackrel{\leftarrow}{A^{-}} O} R \xrightarrow{\stackrel{\leftarrow}{-}} R \xrightarrow{\stackrel{\leftarrow}{-} O} R \xrightarrow{$$

Shown in Scheme 1 is our recent practice 4a of this new 1,2-difunctionalization on arenynamide 1. In this transformation, gold-catalyzed nitrone oxidation of alkyne 1 produces an imine that reacts efficiently with carbene I to give the α -aminoamide 3. In a further development of this chemistry, we report a new discovery that applies platinum catalysis to ynamides 4, to deliver products 5 through an

Scheme 1. Gold-Catalyzed 1,2-Difunctionalization of Activated Alkynes

Previous work:

$$Ar \xrightarrow{EWG} N \xrightarrow{Au^{+}} Au^{+} \xrightarrow{EWG} N \xrightarrow{R^{2}} N \xrightarrow{R^{1}} Ar \xrightarrow{EWG} N \xrightarrow{R^{2}} N$$

oxoarylation reaction. Notably, this new alkyne 1,2-difunctionalization proceeds via a distinct mechanism that excludes the intermediacy of gold carbenes **I**.

Shown in Table 1 is the reaction of nitrone 2a (2 equiv) with ynamide 4a (1 equiv) in dichloroethane (DCE) in the presence of various gold and platinum catalysts at 5 mol % loading. We observed the complete consumption of starting ynamide 4a under the reaction conditions. We tested first the reactions with gold catalysts including $P(t-Bu)_2$ -(o-biphenyl)AuNTf₂, IPrAuNTf₂ (IPr = 1,3-bis(diisopropylphenyl)imidazol-2-ylidene), and AuCl₃ in DCE at 28 °C, and all gave rise to a messy mixture, due to rapid decomposition

Table 1. Catalytic Activity over Gold and Platinum Catalysts

entry	$\mathrm{catalyst}^b$	$\begin{array}{c} temp \\ (0\ ^{\circ}C) \end{array}$	time (h)	$\mathbf{5a}$ (yields, %) c
1	LAuCl/AgNTf ₂	28	2	_
2	IPrAuCl/AgNTf ₂	28	3	_
3	$AuCl_3$	28	2	_
4	AuCl	28	0.3	57
5	$PtCl_2$	28	0.5	95
6	PtI_2	80	0.7	15
7	$PtCl_4$	28	0.5	65

 $^a[{\bf 4a}]=0.17$ M. $^bL={\rm P}(t{\rm -Bu})_2(o{\rm -biphenyl}),~{\rm IPr}=1,3{\rm -bis-(diisopropylphenyl)imidazol-2-ylidene.}$ $^c{\rm Product~yields~are~reported}$ after purification from silica column.

of the starting ynamide **4a** (entries 1–3). To our delight, use of the less acidic AuCl gave an oxoarylation product **5a** in 57% yield. The yield of desired **5a** was further increased up to 95% with PtCl₂ in DCE at 28 °C (entry 5). In contrast, PtI₂ led only to unreacted ynamide **4a** with a 32% recovery, in DCE at 28 °C, but a thermal activation gave the desired **5a** in 15% yield (entry 6). We also tested

Scheme 2. Reaction Scope for Pt-Catalyzed Oxoarylation Reactions^a

^a[Ynamide] = 0.17 M, reactions performed at 28 °C. ^b Product yields are reported after purification from silica column.

the reaction with PtCl₄, which gave compound **5a** in 65% yield (entry 7).

Shown in Scheme 2 is the generalization of this platinum-catalyzed oxoarylation reaction with various ynamides 4b-4d (1.0 equiv) and nitrones 2b-2m (2.0 equiv). The reactions were performed with PtCl₂ catalyst (5 mol %) in dichloroethane at 28 °C. The duration of the reaction (0.3–0.8 h) determines whether there is a complete consumption of the ynamides 4b-4d. We examined first the reactions using nitrones 2b-e bearing alterable 4-subsituted phenylimines (Ar = 4-MeOC₆H₄, 4-FC₆H₄, 4-ClC₆H₄, and 4-CF₃C₆H₄); these afforded the desired products **5b–5e** in satisfactory yields (90–94%, entries 1–4). The reaction was further applied to the additional nitrones **2f–2h**, bearing heteroaryl imines (Ar = 2,3-thienyl and 2-furanyl). These delivered the oxoarylation products 5f— **5h** in excellent yields (90-93%, entries 5-7). For nitrone 2i, bearing a naphthylimine, its corresponding product

Org. Lett., Vol. 14, No. 21, 2012 5523

5i was obtained in 91% yield (entry 8). Such reactions also worked for the nitrones **2j–2m** with various 4-substituted anilines (X = MeO, Cl, Br, and CO₂Et); these gave the desired products **5j–5m** in 88–92% yield (entries 9–12). We tested this reaction on other ynamides **4b–4d** and found their reactivities varied with the sulfonamide functionalities. For ynamides **4b** and **4c** bearing –NTs(Ph) and –NMs(Ph), the resulting products **5n** and **5o** were obtained in 88–90% yields (entries 13–14). In contrast, ynamide **4d** gave many minor products because of its facile decomposition with the PtCl₂ catalyst within 0.15 h (entry 15). The reactions failed to work with other sulfonamides including NMs(*n*-Bu), NTs(*n*-Bu).

Scheme 3 depicts an efficient transformation of an oxoarylation product **5a** into indolin-2-one **6a**. In this process, initially present **5a** was reduced with NaBH₃CN (1 equiv) in THF under ambient conditions (28 °C, 20 min), and the solution was filtered through a Celite bed. The THF filtrate was heated with silica gel (SiliaFlashG60) at 80 °C for 1 h to ensure a complete conversion to the indolin-2-one **6a** (89%).

Scheme 3. Formation of an Indolin-2-one

To highlight the utility of this platinum-catalyzed oxoarylation of ynamides, we developed a one-pot synthesis of useful indolin-2-ones 6b-6m from ynamide 4a and nitrones 2b-2m, as depicted in Scheme 4. In a typical operation, when the oxoarylation reaction of ynamide 1a was complete in dichloroethane, a THF solution of NaBH₃CN was added. The mixture was stirred for 20 min before being filtered through a Celite bed. The filtrate was heated with silica gel (SiliaFlashG60) at 80 °C for 1 h before workup. We used the same nitrones 2b-2m as those in Scheme 2 to exemplify the generality of this indolin-2-one synthesis. Entries 1-8 show the efficient production of indolin-2-ones 6b-6i in 74-84% yield, from nitrones 2b-2i bearing alterable phenylimines 2b-2e (Ar = 4-MeOC₆H₄, 4-FC₆H₄, 4-ClC₆H₄, and 4-CF₃C₆H₄), heteroaryl imines 2f-2h (Ar = 2,3-theinyl and 2-furanyl), and 2-naphthylimine 2i. For nitrones 2j-2m bearing varied aniline substitutents, the resulting indolin-2-ones 6j-6m were obtained in 53-79% yields (entries 9-12).

Scheme 5 shows deuterium labeling experiments that assist our understanding of the reaction mechanism. Treatment of ynamide $\bf 4a$ and the deuterated nitrone $\bf d_5$ - $\bf 2a$ with PtCl₂ under our standard conditions afforded the desired $\bf d_5$ - $\bf 5a$ with one methylene proton bearing $\bf X=0.70$ D. We performed this platinum-catalyzed reaction on ynamide $\bf 4a$ and $\bf d_0$ - $\bf 2a$ (2 equiv) in the presence of deuterated imine $\bf d_5$ - $\bf 7a$ (2 equiv), but the resulting oxoarylation product

Scheme 4. Cascade Sequence for the Synthesis of Indolin-2-ones^a

^a[Ynamide] = 0.17 M, reactions performed at 28 °C. ^b Product yields are reported after purification from silica column.

 d_0 -5a had no deuterium content at all. Nitrone 2a is clearly the source of both the oxygen and imine groups of the resulting product 5a.

Scheme 5. Deuterium-Labeling Experiments

We propose the mechanism as depicted in Scheme 6 to rationalize our resulting oxoarylation compound **5a**. We postulate that nitrone **2a** initially attacks at the $C\alpha$ -carbon of π -ynamide **4a**, which also has a ketene resonance hybrid

5524 Org. Lett., Vol. 14, No. 21, 2012

⁽⁹⁾ For chemistry of ynamides, see reviews: (a) DeKorver, K. A.; Li, H.; Lohse, A. G.; Hayashi, R.; Lu, Z.; Zhang, Y.; Hsung, R. P. *Chem. Rev.* **2010**, *110*, 5064. (b) Evano, G.; Coste, A.; Jouvin, K. *Angew. Chem., Int. Ed.* **2010**, *49*, 2840–2859.

Scheme 6. A Plausible Reaction Mechanism

form A'. ^{9,10} A subsequent [3,3]-sigmatropic shift of the β -oxy alkenylplatinum intermediate **B** generates the

(10) For gold-catalyzed electrophilic activation of ynamides, see ref 3e and (a) Li, C.; Zhang, L. Org. Lett. 2011, 13, 1738. (b) Vasu, D.; Hung, H. H.; Bhunia, S.; Gawade, S.; Das, A.; Liu, R.-S. Angew. Chem., Int. Ed. 2011, 50, 6911. (c) Kramer, S.; Odabachian, Y.; Overgaard, J.; Rottander, M.; Gagosz, F.; Skrydstrup, T. Angew. Chem., Int. Ed. 2011, 50, 5090. (d) Hashmi, A. K. S.; Bührle, M.; Wölfle, M.; Rudolph, M.; Wieteck, M.; Rominger, F.; Frey, W. Chem.—Eur. J. 2010, 16, 9846. (e) Davies, P. W.; Cremonesi, A.; Dumitrescu, L. Angew. Chem., Int. Ed. 2011, 50, 8931. (f) Karad, S. N.; Bhunia, S.; Liu, R.-S. Angew. Chem., Int. Ed. 2012, 51, 8722. (g) Dateer, R. B.; Pati, K.; Liu, R.-S. Chem. Commun. 2012, 48, 7200. (h) Dateer, R. B.; Shaibu, B. S.; Liu, R.-S. Angew. Chem., Int. Ed. 2012, 51, 113.

(11) Wang, Y.; Ye, L.; Zhang, L. Chem. Commun. 2011, 47, 7815.

platinum-containing amide **C**, ultimately giving the observed product **5a** through a proton transfer. This noncarbene route is analogous to that proposed for the 1,2-difunctionalization of alkynes via diphenylsulfur oxide. ^{3c,e,11}

In summary, a new platinum-catalyzed oxoarylation of ynamides with nitrones is reported. These reactions work well with a reasonable range of substrates. Cascade sequences for the synthesis of indolin-2-ones via NaBH₃CN reduction *in situ* of the initially formed oxoarylation products are also developed. On the basis of deuterium labeling experiments, we postulate a noncarbene route, in which the key step is a [3,3]-sigmatropic shift of the β -oxy alkenylplatinum intermediate **B**.

Acknowledgment. The authors wish to thank the National Science Council, Taiwan for supporting this work.

Supporting Information Available. Experimental procedures, NMR spectra, and characterization data of new compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

The authors declare no competing financial interest.

Org. Lett., Vol. 14, No. 21, 2012 5525